Interfacing DC motors with microcontroller
DC motors are always preffered over stepper motors. There are many things which you can do with your DC motor when interfaced with a microcontroller.
in this tutorial we will learn to interfacing a DC motor with a microcontroller. Usually H-bridge is preffered way of interfacing a DC motor. These days many IC manufacturers have H-bridge motor drivers available in the market like L293D is most used H-Bridge driver IC. H-bridge can also be made with the help of trasistors and MOSFETs etc.
►Working Theory of H-Bridge The name "H-Bridge" is derived from the actual shape of the switching circuit which control the motoion of the motor. It is also known as "Full Bridge". Basically there are four switching elements in the H-Bridge as shown in the figure below.
As you can see in the figure above there are four switching elements named as "High side left", "High side right", "Low side right", "Low side left". When these switches are turned on in pairs motor changes its direction accordingly. Like, if we switch on High side left and Low side right then motor rotate in forward direction, as current flows from Power supply through the motor coil goes to ground via switch low side right. This is shown in the figure below.
As you can see in the figure above there are four switching elements named as "High side left", "High side right", "Low side right", "Low side left". When these switches are turned on in pairs motor changes its direction accordingly. Like, if we switch on High side left and Low side right then motor rotate in forward direction, as current flows from Power supply through the motor coil goes to ground via switch low side right. This is shown in the figure below.
Similarly, when you switch on low side left and high side right, the current flows in opposite direction and motor rotates in backward direction. This is the basic working of H-Bridge. We can also make a small truth table according to the switching of H-Bridge explained above.
Truth Table
**Please Download the Image to see clearly >>> as some problem with the format uploaded ****
Motor stops or deceleratesAs already said, H-bridge can be made with the help of trasistors as well as MOSFETs, the only thing is the power handling capacity of the circuit. If motors are needed to run with high current then lot of dissipation is there. So head sinks are needed to cool the circuit. Now you might be thinkin why i did not discuss the cases like High side left on and Low side left on or high side right on and low side right on. Clearly seen in the diagra, you don't want to burn your power supply by shorting them. So that is why those combinations are not discussed in the truth table. So we have seen that using simple switching elements we can make our own H-Bridge, or other option we have is using an IC based H-bridge driver. Both of them are discussed in the next section of the tutoria
Motor stops or deceleratesAs already said, H-bridge can be made with the help of trasistors as well as MOSFETs, the only thing is the power handling capacity of the circuit. If motors are needed to run with high current then lot of dissipation is there. So head sinks are needed to cool the circuit. Now you might be thinkin why i did not discuss the cases like High side left on and Low side left on or high side right on and low side right on. Clearly seen in the diagra, you don't want to burn your power supply by shorting them. So that is why those combinations are not discussed in the truth table. So we have seen that using simple switching elements we can make our own H-Bridge, or other option we have is using an IC based H-bridge driver. Both of them are discussed in the next section of the tutoria
Comments
Post a Comment